Set packing

Results: 58



#Item
11Graph theory / NP-complete problems / Discrete geometry / Independent set / FranklRdl graph / Lovsz number

A semidefinite programming hierarchy for geometric packing problems David de Laat (TU Delft) Joint work with Frank Vallentin (Universit¨at zu K¨oln) Isaac Newton Institute for Mathematical Sciences – July 2013

Add to Reading List

Source URL: www.daviddelaat.nl

Language: English
12Operations research / Discrete geometry / NP-complete problems / Conjectures / Circle packing / Sphere packing / Independent set / Kepler conjecture / Tammes problem / Mathematical optimization / Semidefinite programming / FranklRdl graph

Moment methods in energy minimization David de Laat Delft University of Technology (Joint with Fernando Oliveira and Frank Vallentin) L´aszl´

Add to Reading List

Source URL: www.daviddelaat.nl

Language: English
13Scheduling / Operations research / Mathematical optimization / Combinatorial optimization / Independent set / Interval scheduling / Interval graph / Bin packing problem / Algorithm / Steve Jobs / Job shop scheduling / Multiprocessor scheduling

Online Optimization of Busy Time on Parallel Machines∗ Mordechai Shalom1 Ariella Voloshin2 Prudence W.H. Wong3 Fencol C.C. Yung3 Shmuel Zaks2

Add to Reading List

Source URL: cgi.csc.liv.ac.uk

Language: English - Date: 2014-01-22 06:23:49
14Convex analysis / Convex set / Convex hull / Limit of a function

393 Documenta Math. On Packing Spheres into Containers About Kepler’s Finite Sphere Packing Problem

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2006-12-02 20:54:38
15Operations research / Discrete geometry / NP-complete problems / Conjectures / Circle packing / Sphere packing / Independent set / Kepler conjecture / Tammes problem / Mathematical optimization / Semidefinite programming / FranklRdl graph

Moment methods in energy minimization David de Laat CWI Amsterdam Andrejewski-Tage Moment problems in theoretical physics

Add to Reading List

Source URL: www.daviddelaat.nl

Language: English
16NP-complete problems / Operations research / Independent set / Optimization problem / Discrete geometry / Graph / Duality / Packing problems / Mathematical optimization / Planar graphs / Matching / Matroid

A semidefinite programming hierarchy for packing problems in discrete geometry David de Laat (TU Delft) Joint work with Frank Vallentin (Universit¨at zu K¨oln) Applications of Real Algebraic Geometry

Add to Reading List

Source URL: www.daviddelaat.nl

Language: English
17Institut national de recherche sur les transports et leur scurit / Universit Lille Nord de France / Ant colony optimization algorithms

An ant colony optimization inspired algorithm for the Set Packing Problem with application to railway infrastructure Xavier GANDIBLEUX1 , Julien JORGE1 , S´ ebastien ANGIBAUD1 Xavier DELORME2 and Joaquin RODRIGUEZ3

Add to Reading List

Source URL: www.emse.fr

Language: English - Date: 2005-08-19 09:46:26
18Planar graphs / Graph connectivity / Graph operations / Dual graph / Line segment / Cut / Convex set / Connectivity / Graph / Bridge / Planar separator theorem / Circle packing theorem

CCCG 2007, Ottawa, Ontario, August 20–22, 2007 Disjoint Segments have Convex Partitions with 2-Edge Connected Dual Graphs Nadia M. Benbernou∗

Add to Reading List

Source URL: www.eecs.tufts.edu

Language: English - Date: 2007-09-02 21:41:50
19

OPTIMAL COVERS WITH HAMILTON CYCLES IN RANDOM GRAPHS ¨ DAN HEFETZ, DANIELA KUHN, JOHN LAPINSKAS AND DERYK OSTHUS Abstract. A packing of a graph G with Hamilton cycles is a set of edgedisjoint Hamilton cycles in G. Such

Add to Reading List

Source URL: web.mat.bham.ac.uk

Language: English - Date: 2013-07-09 17:13:19
    20Computational complexity theory / Theory of computation / Complexity classes / Packing problems / NP-complete problems / Bin packing problem / Approximation algorithms / Polynomial-time approximation scheme / Partition problem / NP / NC / Time complexity

    Chapter 10 Bin Packing Here we consider the classical Bin Packing problem: We are given a set I = {1, . . . , n} of items, where item i ∈ I has size si ∈ (0, 1] and a set B = {1, . . . , n} of bins with capacity one

    Add to Reading List

    Source URL: www2.informatik.hu-berlin.de

    Language: English - Date: 2014-06-25 03:14:23
    UPDATE